Basic Science News: TNF inhibition reduces neurovascular injury after Intracerebral Hemorrhage

TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice

Melanie D. King,
Cargill H. Alleyne Jr.,
Krishnan M. Dhandapani
Department of Neurosurgery, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
Abstract

Intracerebral hemorrhage (ICH), the most common form of hemorrhagic stroke, exhibits the highest acute mortality and the worst long-term prognosis of all stroke subtypes. Unfortunately, treatment options for ICH are lacking due in part to a lack of feasible therapeutic targets. Inflammatory activation is associated with neurological deficits in pre-clinical ICH models and with patient deterioration after clinical ICH. In the present study, we tested the hypothesis that R-7050, a novel cell permeable triazoloquinoxaline inhibitor of the tumor necrosis factor receptor (TNFR) complex, attenuates neurovascular injury after ICH in mice. Up to 2 h post-injury administration of R-7050 significantly reduced blood–brain barrier opening and attenuated edema development at 24 h post-ICH. Neurological outcomes were also improved over the first 3 days after injury. In contrast, R-7050 did not reduce hematoma volume, suggesting the beneficial effects of TNFR inhibition were downstream of clot formation/resolution. These data suggest a potential clinical utility for TNFR antagonists as an adjunct therapy to reduce neurological injury and improve patient outcomes after ICH.